Worksheet for 2021-09-20

Conceptual questions

Question 1. Suppose $f(x, y)$ is a function and $P \in \mathbb{R}^{2}$ is a should be put in the blank below point such that $\nabla f(P)=\langle 5,12\rangle$. What number should be put in the blank below

$$
\langle 5,12, \ldots\rangle
$$

to get a normal vector for the tangent plane to $z=f(x, y)$ at the point P ? How about a vector parallel to that plane?
Question 2. Suppose $g(x, y)$ is a function, $\mathbf{u}=\langle 3 / 5,4 / 5\rangle$ and $Q \in \mathbb{R}^{2}$ is a point such that $D_{\mathbf{u}} g(Q)=-3$. What number

$$
\left\langle\frac{3}{5}, \frac{4}{5},-\right\rangle
$$

to get a vector parallel to the tangent plane to $z=g(x, y)$ at the point Q ? Is there enough information to obtain a normal vector? What if you were also told that $D_{\mathrm{v}} g(Q)=4$, where $\mathbf{v}=\langle 4 / 5,3 / 5\rangle$?

Computations

Problem 1. This problem is recycled from the last worksheet (we hadn't covered the chain rule at that time).
(a) Suppose that $\mathbf{r}(t)=(x(t), y(t))$ is parametrized by arclength (recall that this means $\left|\mathbf{r}^{\prime}(t)\right|=1$; the particle is "moving at speed $\left.l^{\prime \prime}\right)$. Show that the directional derivative of f in the direction of $\mathbf{r}^{\prime}(t)$ is equal to $\frac{\mathrm{d}}{\mathrm{d} t}(f(\mathbf{r}(t)))$. Hint: Use the chain rule.
(b) Consider the function

$$
f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) .
$$

Using the preceding part, compute $f_{y}(1,0)$. Hint: Use the unit circle. You should not need the derivative of arccosine.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. $\langle 5,12,-1\rangle$ is a normal vector. $\langle 5,12,169\rangle$ is a tangent vector.
Question 2. $\langle 3 / 5,4 / 5,-3\rangle$ is a tangent vector. This is not enough information to obtain a normal vector. However, if we also knew $\langle 4 / 5,3 / 5,4\rangle$ as a tangent vector, then we could compute their cross product, equal to $\langle 5,-24 / 5,-7 / 25\rangle$, which is a normal vector. Of course, any nonzero multiple of this would suffice too.

Answers to computations

Problem 1.

(a) The directional derivative in the direction of $\mathbf{r}^{\prime}(t)$ is

$$
\begin{aligned}
\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) & =\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& =\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))
\end{aligned}
$$

where in the last step the chain rule was used.
(b) Use $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$, which is parametrized by arclength and has $\mathbf{r}^{\prime}(0)=\langle 0,1\rangle$. So by the preceding part,

$$
\begin{aligned}
f_{y}(1,0) & =D_{\langle 0,1\rangle} f(x, y) \\
& =\left.\left(\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))\right)\right|_{t=0} \\
& =\left.\left(\frac{\mathrm{d}}{\mathrm{~d} t}(2 t)\right)\right|_{t=0} \\
& =2
\end{aligned}
$$

